

Feature.0006

High-NA Objective Lens Focusing

How does light propagate through the high-NA objective lens to the focal plane? What does light look like in the focal plane?

About This Use Case

- The following toolbox is required
 - Starter toolbox
- This use case was produced with VirtualLab Fusion (Build 7.0.0.35).
- Get your free Trial Version <u>here</u>!

This Use Case Shows...

- 3D ray tracing of the objective lens focusing.
- the dot diagram at the focal plane.
- field intensity and field amplitude at the focal plane.

- High-NA objective lenses are widely used in optical lithography, microscopy, etc.
- Consideration of the vectorial nature of light in the simulation of the focusing is therefore fundamental.
- VirtualLab supports switching the ray and field tracing with great ease.
- The focal spot is shown, demonstrating the well-known asymmetry which stems from the vectorial effects.

Overview: System Parameters

Input plane wave

Parameter	Description / Value & Unit
wavelength	266.08nm
polarization	linear in x-direction (0°)
diameter	3mm

• Objective Lens

Parameter	Description / Value & Unit
NA of condenser lens	0.85
number of interfaces	26

• Detector

Parameter	Description / Value & Unit
window size	1μm×1μm

Overview

- The sample system is preset with the complicated objective lens included.
- Next, we demonstrate how to perform simulation on the sample system following the recommended workflow in VirtualLab.

Ray Tracing Simulation

- Choose Ray Tracing System Analyzer as the simulation engine at first.
- Click on Go!
- The 3D ray tracing result is obtained.

e.Lens.Focusing.l	pd #1)*	-	
Logging			
Target Element		Linkage	
Туре		Propagation Method	On/Off
High-NA Objective Lens		Ray Tracing	On
			>
Simulation Engine	e Ray Tracing) System Analyzer 🛛 🗸	Go!
	Classic Field	Tracing	
	Hield Tracing Bay Tracing	g 2nd Generation	
	Ray Tracing	System Analyzer	
N N N			

Ray Tracing Simulation

- Then, select *Ray Tracing* as the simulation engine.
- Click Go!
- Then the dot diagram (2D ray tracing result) is obtained.

۲ (Jum)

:	Objective.Lens.Fo	cusing.lpd #1)*		- • ×
racing	S Logging			
ngine.	Targ	et Element	Linkage	
5	Index	Туре	Propagation Method	On/Off
	n 1 High-NA C	Objective Lens	Ray Tracing	On
	<u>}</u>			
IM (2D	{ 			
b				>
	Simulai	ion Engine Dev Terrin	- Custon Andrea	
ectromagnetic Field Detector #6				
Ray Distribution			g 2nd Generation	
Position			g System Analyzer	

Field Tracing Simulation

- Switch to field tracing and select *Field Tracing 2nd Generation* as the simulation engine.
- Click Go!

ŧive	tive.Lens.Focusing.lpd #1)*				
ζ ζ	ogging				
}	Targe	t Element		Linkage	
<i>fex</i>	x Type			Propagation Method	On/Off
1	High-NA Objective Lens		ns	Ray Tracing	On
{					
1					
ţ					
}					>
Į					
<pre>{</pre>	Simulation Engine Ray Tracing) ~	Go!	
1			Classic Field	Tracing	
5			Field Tracing	g 2nd Generation	
}			Ray Tracing) Svstem Analvzer	

Field Tracing Results (Camera Detector)

- The top figure shows the field intensity by integrating E_x and E_y components only.
- The bottom figure shows the field intensity by integrating E_x , E_y and E_z components: an obvious asymmetry is seen due to the relatively large E_z component in high-NA situation.

Field Tracing Results (EM Field Detector)

• All electromagnetic field components are obtained by using the Electromagnetic Field Detector.

🛃 27: Electromagnetic Field Detector #610 after H... 🗖 💷 📈 Electromagnetic Field Diagram Table Value at (x,y) Ey-Component [kV/m] 0.34767 0.2 ۲ [hm] 0.17383 0 0.4 7....E-07 -0.2 0 0.2 -04 X [µm]

🛃 27: Electromagnetic Field Detector #610 after H... 🗖 💷 🎫 Electromagnetic Field Diagram Table Value at (x,y) Ez-Component [kV/m] 3.3635 9.4 0.2 ۲ (mu) 0 1.6818 0.2 4 1....E-08 -0.2 0 0.2 -04 04 X [µm]

Amplitude of E_z

Amplitude of E_x

Amplitude of E_y

www.wyrowski-photonics.com

Field Tracing Results (EM Field Detector)

• All electromagnetic field components are obtained by using the Electromagnetic Field Detector.

Amplitude of H_x

Amplitude of H_v

Amplitude of H_z

Document & Technical Info

code	Feature.0006
version of document	1.0
title	High-NA Objective Lens Focusing
category	Simulation
author	Rui Shi (LightTrans)
used VL version	7.0.035
last modifed on	September 7, 2017