Focusing of Femtosecond Pulse by Using a High-NA Off-Axis Parabolic Mirror
To fully characterize the focusing behavior of an ultrashort pulse, different electromagnetic properties must be considered. That includes both spatial distribution, temporal / spectral distribution, vectorial effect, and also the possible coupling between the above. As an example, the focusing process of a 10fs pulse by using a high-NA parabolic mirror is modeled in VirtualLab, and both the spatial and temporal behaviors are investigated.
Modeling Task

How to calculate output pulse in the focal plane, including the spectral / temporal profile and the spatial distribution of the focal spot for all vectorial field components?
The linearly polarized input pulse has an E_z component with almost zero amplitude.
Results

The slight change in the output spectrum is due to different focus size of different wavelength.

Non-zero E_z component appears due to polarization crosstalk in high-NA focusing situation.
Results

Output plane

$|E_x|^2 \overset{\text{def}}{=} 100\%$

$|E_y|^2 = 3\%$

$|E_z|^2 = 4\%$
<table>
<thead>
<tr>
<th>title</th>
<th>Focusing of Femtosecond Pulse by Using a High-NA Off-Axis Parabolic Mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.0.3.4</td>
</tr>
<tr>
<td>category</td>
<td>Technology Use Case</td>
</tr>
</tbody>
</table>