Optical System for Inspection of Micro-Structured Wafer
Abstract

In semiconductor industry, wafer inspection systems are used to detect defects on a wafer and find their positions. To ensure the image resolution for the microstructures, the inspection system often employs a high-NA objective and works in the UV wavelength range. As an example, a complete wafer inspection system including high-NA focusing effect and light interaction with microstructures is modeled, and the formation of image is demonstrated.
Modeling Task

inspection objective
- NA = 0.9
- effective focal length 2 mm
- back focal length 750 µm

input field
- fundamental Gaussian
- wavelength 266.08 nm
- full divergence angle 0.075°
- circularly polarized

imaging lens
- Newport SPX031AR.10
- effective focal length 500 mm

beam splitter

image

micro-structured wafer
Ray-tracing analysis provides a fast overview of the complete system, including high-NA lens and grating.
Results

Rigorous simulation of grating with Fourier modal method (FMM) is imbedded within the system simulation.

1st diffraction orders

behind micro-structured wafer
Results

Image is formed by interference of different diffraction orders. Simulation of complete system from input field to image plane takes less than 10 seconds!
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Optical System for Inspection of Micro-Structured Wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.0.3.4</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>