

Ultra-Sparse Dielectric Nano-Wire Grid Polarizer

Abstract

Ultra-sparse dielectric nanowire grids show strongly polarization-dependent properties and can therefore be employed as wideband reflectors [J. W. Yoon et al., Opt. Express 23, 28849-28856 (2015)]. The polarization-, wavelength-, and angle-dependent properties of selected nanowire grids are investigated by using the Fourier modal method (FMM, also known as RCWA). Visualization of the interaction between electric field and the nanowire grids are presented.

Modeling Task

Nanowire No.	#1	#2	#3
refractive index n	10	7.07	3.16
height h	269nm	270nm	292nm
filling factor F	0.01	0.02	0.1

Parameters are taken from reference paper: J. W. Yoon *et al.*, Opt. Express **23**, 28849-28856 (2015).

Nanowire

Arbitrary periodic structures (containing multiple surfaces) can be defined and saved as *Stacks*. These *Stacks* then can be added to a *General Grating Component* for analysis.

Configuration of Grating Structures by Using Interfaces

Grating Order Analyzer

The *Grating Order Analyzer* is able to calculate the transmission/reflection efficiency of all/certain orders. For the periodic structure in this example, the selected output order is R0 and T0.

General Single Orders Inside Component Z 0 mm Order Selection Strategy Y Selection Strategy Order Range X Y Minimum Order 0 • Ool 0 • Coordinates Cordinates Spherical Angles Cartesian Angles Avave Vector Components Positions Efficiencies Rayleigh Coefficients Ex Ey Ex Ey TE TM	Grating Order Analyzer Kitt Grating Order Analyzer	<pre>:\LightTrans\Ultra-Sparse Nanowire_03_Show Field Inside TE.os)* Ideal Plane Wave Nanowire #3 Raw Data Detector 0 1 600 X: 0 mm Y: 0 mm Y: 0 mm</pre>
Maximum Order O O O Coordinates General Single Orders Spherical Angles Catculated Orders Wave Vector Components Positions ✓ Efficiencies Order Collections Rayleigh Coefficients ✓ Single Order Output Ex Ey TE TM	General Single Orders Order Selection Strategy Selection Strategy X Y Minimum Order	Field Inside Component Z: 0 mm Analyzer: FMM Raw Data Detector 801 601 Grating Order Analyzer 601 802 X: 0 mm
✓ Efficiencies Output Rayleigh Coefficients ☑ Order Collections □ Ex □ Ey □ Ez □ TE □ TM	Maximum Order 0 Coordinates Spherical Angles Wave Vector Components Positions	Edit Grating Order Analyzer × General Single Orders Calculated Orders Transmission Reflection
	Efficiencies Rayleigh Coefficients Ex Ey Ez TE TE TM	Output ✓ Order Collections ✓ Single Order Output Summed Transmission, Absorption, and Reflection Polar Diagram (Angle α Only)

Field Inside Analyzer

The Field Inside Component: FMM Analyzer visualizes the field propagation in the defined micro- or nanostructure. In this example, the propagation inside the nanowire structure is investigated. For the output, the forward propagating modes, the backward propagating modes or all modes together can be selected.

Summary – Components...

Parameter Scanning (1D)

Results of Fourier modal method (FMM) simulation in VirtualLab

Nanowire No.	#1 ——	#2 ——	#3 ——
refractive index n	10	7.07	3.16
height h	269nm	270nm	292nm
filling factor F	0.01	0.02	0.1

1.4

1.6

Wavelength (λ/Λ)

1.8

-50

1.2

Parameter Scanning (2D)

Results of Fourier modal method (FMM) simulation in VirtualLab Fusion (TE polarized light)

J. W. Yoon *et al.*, Opt. Express **23**, 28849-28856 (2015).

Visualization of Field Inside Grating - TE

Results of Fourier modal method (FMM) simulation in VirtualLab Fusion (@1045 nm wavelength)

Nanowire No.	#1	#2	#3
refractive index n	10	7.07	3.16
height h	269nm	270nm	292nm
filling factor F	0.01	0.02	0.1

Note: The Temporal Sampling of Real Part function of the Miscellaneous section in Manipulations can be used to visualize the propagation of the field in the component.

Visualization of Field Inside Grating - TM

Results of Fourier modal method (FMM) simulation in VirtualLab Fusion (@1045 nm wavelength)

Nanowire No.	#1	#2	#3
refractive index n	10	7.07	3.16
height h	269nm	270nm	292nm
filling factor F	0.01	0.02	0.1

Note: The Temporal Sampling of Real Part function of the *Miscellaneous* section in *Manipulations* can be used to visualize the propagation of the field in the component.

Comparison with reference

reference results from the literature

Nanowire No.	#1	#2	#3
refractive index n	10	7.07	3.16
height h	269nm	270nm	292nm
filling factor F	0.01	0.02	0.1

12

VirtualLab Fusion Technologies

title	Ultra-Sparse Dielectric Nano-Wire Grid Polarizers
document code	GRT.0006
document version	2.0
software edition	VirtualLab Fusion Advanced
software version	2023.1 (Build 1.556)
category	Application Use Case
further reading	 <u>Grating order analyzer</u> <u>Rigorous Analysis and Design of Anti-Reflective Moth-Eye Structures</u> <u>Rigorous Analysis of Nanopillar Metasurface Building Block</u>