Modeling of Etalon with Planar or Curved Surfaces
Abstract

The simplest form of an optical etalon is a transparent plate with parallel surfaces. Such a structure forms a resonator, and the transmittance and reflectance vary with the thickness of etalon. Beside the simplest structure, etalons other configurations, with e.g. non-parallel surfaces and curved surfaces, are designed and used for different applications. With the non-sequential field tracing technique, several configurations of etalons are analyzed, and the difference in the output interference pattern is presented.
Modeling Task

- input plane wave
 - wavelength 532 nm
 - linearly polarized along y direction (also x for comparison)

- etalon
 - center thickness 100 µm
 - configurations
 a) planar-planar (parallel)
 b) planar-planar (tilted)
 c) cylindrical-planar
 d) planar-spherical

- intensity pattern
Constructive and destructive interference alternatively shows up when the thickness of etalon varies.

configuration
a) planar-planar (parallel)
- varying thickness from 100 to 99 µm
Results

configuration
b) planar-planar (non-parallel)
- center thickness 100 µm
- tilt of first surface

Linear interference fringes appear due to linear change of etalon thickness.
Results

c) cylindrical-planar
- center thickness 100 µm
- cylindrical surface radius 1 m

Polarization-dependent effect on the interference is taken into account.
Results

d) planar-spherical
- center thickness 100 µm
- spherical surface radius -1 m

Non-sequential simulation of etalon with curved surfaces takes only 2 seconds.
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Modeling of Etalon with Planar or Curved Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.3.0.41</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>