

Modeling of Etalon with Planar and Curved Surfaces

Abstract

The basic setup of an optical etalon is a transparent plate with parallel surfaces. Such a structure forms a resonator, where transmittance and reflectance vary with the thickness of the etalon. Beside this simple configuration, more complex etalons, with e.g. non-parallel surfaces and curved surfaces, are designed and used for different applications. With the non-sequential field tracing technique of VirtualLab Fusion, several configurations of etalons are analyzed, and the differences in the output interference fringes are investigated including polarization effects.

Modeling Task

Etalon

The Lens System Component allows for an easy definition of a component consisting of various interfaces. Among other types of surfaces, it is possible to include planar, spherical and cylindrical interfaces as well as to define the media between them.

Channel System for Nonsequential Modeling

In the *Manual Channel Configuration* mode, the user can control which light paths should be considered during the simulation. The detailed configuration can be found on the *Channel Configuration* page. Further information can be found here:

Channel Configuration For Surfaces and Grating Regions

a) Parallel Planar-Planar Surfaces

Constructive and destructive interference are alternating as the thickness of the etalon varies. Due to the perfect parallel and planar surfaces no fringes appear.

b) Tilted Planar-Planar Surfaces

c) Cylindrical-Planar Surfaces

input polarization along y

d) Spherical-Planar Surfaces

VirtualLab Fusion Technologies

title	Modeling of Etalon with Planar or Curved Surfaces
document code	IFO.0011
document version	1.3
software edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 Examination of Sodium D Lines with Etalon Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy Channel Configuration For Surfaces and Grating Regions