

Design of a High-NA Beam Splitter with 24000 Dots Random Pattern

Abstract

Designing of high NA dot-projection system is of great practical use in the optical market. These dots distributed in a random way. That can be achieved by using a single beam splitter. Generally, the dot-distribution is in an equidistant grid in angle space (κ -domain), which means that the dots propagates along predefined angular directions, while on a distorted grid in the detector plane in spatial domain. This use case shows how to design the phase plate of a single beam splitter to generate 24,000 dots random pattern with high NA.

Design Task

- Generally, the dots target pattern is given in κ -domain (equidistantsampled in Cartesian coordinate). It means, each dot is related to one specific propagation angle. Equidistant sampling grid in κ -domain results in a distorted grid in spatial (*x*-domain).
- Note that the target pattern is of Hermitian symmetry, beam splitter with 2-level discrete phase is enough to generate this pattern.

 $NA(\theta^{T} x \theta^{S})$

working dist.

55° x 55°

50 cm

Parameters Preparing: Target

- Parameters of target are calculated from NA($\theta^{T} x \theta^{S}$)
 - number of sampling points (N_x, N_y) is given
 - $N_x = N_y = 155;$
 - window size

$$K_x = 2 \cdot \frac{2\pi}{\lambda_0} n \sin \frac{\theta^{\mathrm{T}}}{2} = 2 \cdot \frac{2\pi}{850 \times 10^{-9}} \cdot 1.0 \cdot \sin \frac{55^{\circ}}{2}$$

= 6.8265 × 10⁶ 1/m
$$K_y = 2 \cdot \frac{2\pi}{\lambda_0} n \sin \frac{\theta^{\mathrm{S}}}{2} = 6.8265 \times 10^{6} 1/\mathrm{m}$$

- sampling distance

$$\delta k_x = \frac{K_x}{N_x - 1} = \frac{6.8265 \times 10^6}{155 - 1} = 4.4328 \times 10^4 \text{ 1/m}$$
$$\delta k_y = \frac{K_y}{N_y - 1} = 4.4328 \times 10^4 \text{ 1/m}$$

Param. summary: target pattern

n is refractive index of the surrounding

samp. dist. $(\delta k_x = \delta k_y)$ 4.4328 × 10⁴1/m

window size $(K_x = K_y) = 6.8265 \times 10^6 \,\text{l/m}$

Result: Phase and Target in K-Domain

phase

target in κ -domain

of 27.5%

Result: Detected Pattern

Document Information

title	Design of a High-NA Beam Splitter with 24000 Dots Random Pattern
version	1.0
VL version used for simulations	7.0.3.4
category	Application Use Case