

Czerny-Turner Setup

Abstract

Czerny-Turner setups are widely used to measure the spectral information of light sources. Typically, a parabolic mirror is used to collimate the source first, and then a diffraction grating will spatially separate the wavelengths. A second mirror can be employed to refocus each of the now separate wavelength components. By positioning an exit aperture properly, a specific wavelength can be selected. A simulation of the complete Czerny-Turner setup, including real reflective mirrors and a diffractive grating is presented in this use case using, first, a continuous spectrum, and then the discrete example of the sodium doublet.

Modeling Task

System Building Blocks – Homogeneous Power Spectrum

To model light with a homogeneous spectrum, generate a Homogeneous Spectrum through the Sources tab and use it as the spectral composition of the source. Keep in mind that each spectrum will consist of discrete sampling points. Dependent on the particular optical system and the intended simulation a finer sampling of the spectral range might be necessary to model the desired effects accurately.

💕 🛃 🐻 🔻

Ouadrat

Wave

Start

Plane

Wave

System Building Blocks – Homogeneous Power Spectrum

Alternatively, a *Parameter Run* can be applied instead, to vary the wavelength in a specific range. This technique benefits from the option offered by the *Parameter Run* to retroactively add more wavelength samples to the spectrum, without the need to repeat the simulation with previous ones.

Cature	ter Specifica	ation							
et up t	ne parameter	(s) to be varied.							
oucan	select one o	r more paramete	ars which shall be varies	ac well	as the resulting	number of iter	ations Se	weral modes ar	a available
pecifyi	ng how the p	arameters are va	aried per iteration.	a as wen	as the resulting	number officer	ations, se	and an and a second second	e avanable
sage I	Mode Stand	dard 🔻	/						
Filter	by						× [Show Only V	aried Parameter
1 2 *	Object	Category	Parameter	Vary	From	То	Steps	Step Size	Original Valu
		Simulation	Oversampling Fact		0.01	1000	1	999.99	1
	Optical		Oversampling Fact		0.01	1000	1	999.99	1
	Setup	Sectings	Fourier Transform		0.001	1000	1	1000	1
	Parameter	Environment	System Temperature		-273.15 °C	1E+100 °C	1	1E+100 °C	20 °C
			Air Pressure		0 Pa	1 GPa	1	1 GPa	101.33 kPa
Ģ		Medium at "	Material (Air) Con		0	1E+300	1	1E+300	0
			Wavelength	\checkmark	512 nm	552 nm	801	50 pm	518 nm
			Weight		0	1E+300	1	1E+300	1
			Polarization Angle		0°	360°	1	360°	0°
	"Spherical Wave" (# 0		Distance to Input P		-1E+303 mm	1E+303 mm	1	2E+303 mm	-10 mm
))		Lateral Offset X		-1E+303 mm	1E+303 mm	1	2E+303 mm	0 mm
			Lateral Offset Y		-1E+303 mm	1E+303 mm	1	2E+303 mm	0 mm
			Number of Rays X		1	2E+09	1	2E+09	31
			Number of Rays Y		1	2E+09	1	2E+09	31
			Oversampling Factor		1E-300	1F+300	1	1F+300	1

System Building Blocks – Sawtooth Grating

Grating structures, such as a sawtooth or blazed grating, are modeled by defining appropriate surfaces and media in a *Stack*. This *Stack* can then be imported into a variety of different components, depending on the intended use. In this case we investigate the overall wavelength dependency in a grating-specific optical setup, which can be accessed by *Start*, *Gratings*. Afterwards the *Stack* can be loaded into a *Grating Component* in a normal *Optical Setup* to simulate the entire system.

Parameter Coupling

The *Parameter Coupling* feature can be used to link parameters of the system, so that a certain relationship between them is maintained. In this use case we want to adjust the angle of the grating automatically, depending on the which wavelength is investigated .

More information about the *Parameter Coupling* under:

Coupling of Parameters in VirtualLab Fusion

	🔌 New Par 브릭 Optimiz 🗯 Find Foo	ametric Optimization e Detector Positions cus Position Parameter Variatio	Use Pa Cou	arameter	Edit Par Coup	ameter oling				
Edit Param	neter Coupling								×	
Paramete Setup the Filter by	er Specification parameter(s) to be	used as input (independent vari	able) and o	utput (depend	dent variable) of the coup	oling sn	ippet. ow Only Used Parar	meters	
12*	Object	Category		Parar	neter	Use in Sni	ippet	Short Name		
	lazed Grating" (# 3)	ating" (# 3)		Cartesian A	ngle Alpha			Isolated Angle Alpha	ha	
	Edit Par	rameter Coupling								×
	Snippe Define	et Specification the snippet which does the actual	parameter o	coupling.						
	/ Ed	lit		Vali	dity: 🕑					522.00
	Inspec	tionWavelength								492 nm
Help	p Va									

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Value
1. source	Spherical Wave (with Homogeneous Power Spectrum)	point source (with homogeneous spectrum)
2. aperture	Aperture	transmission function
3. parabolic mirror	Parabolic Mirror Component	Linear Plane Interface Approximation (LPIA)
4. sawtooth grating	Grating Component	FMM/RCWA
5. detector	Camera Detector	energy density measurement

System Impressions

3D Ray Tracing visualization

field visualization at detector plane in real and false color (without exit aperture)

Grating Efficiency Calculation

Automatic Rotation of Grating

Application Example: Sodium Doublet Resolution

When propagating into the focus of the second mirror, the separation between the two wavelengths can be visualized. Depending on the simulation settings, diffraction effects caused by the apertures can be included in the simulation. For more details see:

Resolving Sodium Doublet by Using a Czerny-Turner Setup

title	Czerny-Turner Setup
document code	GRT.0030
document version	2.0
software edition	VirtualLab Fusion Advanced
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 <u>Grating Component</u> <u>Coherence Measurement Using Michelson Interferometer and Fourier Transform</u> <u>Spectroscopy</u> <u>Resolving Sodium Doublet by Using a Czerny-Turner Setup</u>