Correction of Chromatic Aberration by Using a Diffractive Lens
Modern optical systems often consist of components with different working principles. For example, a diffractive lens can be used to correct the chromatic aberrations from traditional refractive lenses. Diffractive lenses are usually designed to work at a certain diffraction order; however, undesired orders do exist in practice. In this example, the PSF of a hybrid imaging system consisting of both refractive and diffractive lenses is investigated, especially, with the undesired diffraction orders taken into account.
Modeling Task

- input plane wave
 - wavelengths 486.1 nm, 587.6 nm, 656.3 nm
 - field of view angles 0°, 10°, 20°
 - diameter 5 mm

- focusing objective

- diffractive lens
 - polynomial phase function (radial symmetrical)
 - diffraction efficiencies
 - 1st order: 80%
 - 0th order: 20%

How to evaluate the PSF of a hybrid imaging system with both refractive and diffractive lenses?
Results

Different diffraction orders are clearly visualized in the ray tracing dot diagrams.
Results

Physical-optics calculation of the PSF including both diffraction orders and all colors takes 50 seconds.
Results

off-axis 10°

PSF

0th order

1st order

dot diagram

x [mm]
y [mm]
Results

off-axis 20°
<table>
<thead>
<tr>
<th>title</th>
<th>Correction of Chromatic Aberration by Using a Diffractive Lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.3.0.41</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>